Partial Subdifferentials, Derivates and Rademacher’s Theorem

نویسندگان

  • D. N. BESSIS
  • F. H. CLARKE
چکیده

In this paper, we present new partial subdifferentiation formulas in nonsmooth analysis, based upon the study of two directional derivatives. Simple applications of these formulas include a new elementary proof of Rademacher’s Theorem in Rn, as well as some results on Gâteaux and Fréchet differentiability for locally Lipschitz functions in a separable Hilbert space. Résumé. Dans cet article, nous présentons de nouvelles formules de sousdifférentiation partielle en analyse nonlisse, basées sur l’étude de deux dérivées directionnelles. Une simple application de ces formules nous permet d’obtenir une nouvelle preuve élémentaire du théorème de Rademacher dans Rn, ainsi que certains résultats sur la différentiabilité Gâteaux ou Fréchet des fonctions localement Lipschitz sur un espace de Hilbert séparable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial second-order subdifferentials of -prox-regular functions

Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2  functions. The class of prox-regular functions covers all convex functions, lower C2  functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...

متن کامل

The Heisenberg group and Pansu’s Theorem

The goal of these notes is to introduce the reader to the Heisenberg group with its CarnotCarathéodory metric and to Pansu’s differentiation theorem. As they are very similar, we will first study Rademacher’s theorem about Lipschitz maps and then see how the same technique can be applied in the more complex setting of the Heisenberg group.

متن کامل

Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations

We consider superlinearly convergent analogues of Newton methods for nondifferentiable operator equations in function spaces. The superlinear convergence analysis of semismooth methods for nondifferentiable equations described by a locally Lipschitzian operator in Rn is based on Rademacher’s theorem which does not hold in function spaces. We introduce a concept of slant differentiability and us...

متن کامل

On Rademacher’s Infinite Partial Fraction Conjecture

" It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts. " —Sherlock Holmes to Dr. contains lots of supporting input and output files.

متن کامل

Rademacher’s Infinite Partial Fraction Conjecture Is False

In his book Topics in Analytic Number Theory, Hans Rademacher conjectured that the limits of certain sequences of coefficients that arise in the ordinary partial fraction decomposition of the generating function for partitions of integers into at most N parts exist and equal particular values that he specifies. Despite being open for nearly four decades, little progress has been made toward pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999